image

Contact Information

Office: WEL: 3.210AA
Phone: 512-475-8674

Lab

Office: WEL 3.228
Phone: 512-475-7461

Richard M. Crooks

crooks@cm.utexas.edu

Professor, Faculty



Research Group

Crooks Group



Education

BS, University of Illinois, 1981
PhD, University of Texas, 1987
Postdoctoral Fellow, MIT (1987-1989)



Awards

Pittsburgh Analytical Chemistry Award, 2014

Charles N. Reilley Award in Electroanalytical Chemistry, 2010
Robert A. Welch Chair in Materials Chemistry, 2009-Present
ACS Award in Electrochemistry, 2008
Carl Wagner Memorial Award of the Electrochemical Society, 2003



Affiliations

Center for Nano- and Molecular Science and Technology; Center for Electrochemistry; Texas Materials Institute



Bioanalytical chemistry, nanochemistry, and electrochemistry

The group's focus is on developing the basic science and technology that will lead to a cleaner planet and a healthier life for its inhabitants. Underpinning this basic philosophy are our core competencies in electrochemistry, catalysis, nanomaterials, and biological and chemical microsensors.  For example, we are interested in learning how the physical and chemical properties of catalysts affect their selectivity and efficiency. Nanoscale catalysts in the 1-3 nm size range are of particular interest, because very slight changes to materials in this size range can dramatically affect their catalytic properties. Accordingly, we use a versatile, template-based method, discovered by our group, to synthesize metal nanoparticles that have remarkable uniformity in size, composition, and structure. One important lesson we have learned during the course of these studies is that there are not many good analytical methods for studying the characteristics and properties of nanoparticles smaller than about 3 nm, and therefore we also invent and modify analytical methods to suit our needs.  Our nanoparticle catalysis work is guided by theoretical calculations thanks to a long-standing collaboration with the Henkelman group here at UT. The Crooks group also has a long-standing interest in chemical and biological sensors.  Over the past 2-3 years we have directed this activity toward the development of ultra-low cost sensors (<$1), primarily for medical applications in both the developed and developing world.  In most cases these sensors are constructed of paper, fabricated by origami, and the result of the assay detected using electrochemical methods.  New principles and analytical methods are required to keep the cost of these devices low and the detection limits appropriate for a particular application.  Finally, we have developed a new electrochemical method for desalinating salt water that is highly energy efficient.  We have a basic understanding of the phenomena responsible its effectiveness but are still studying the fundamental principles of the method.  At the same time we are working with a small company to commercialize the desalination technology.



Representative Publications

K. Scida; J. C. Cunningham; C. Renault; I. Richards; R. M. Crooks  "A simple, sensitive, and quantitative electrochemical detection method for paper analytical devices" Anal. Chem.  2014 (published on the ACS website: DOI: 10.1021/ac501004a).

J. C. Cunningham; N. J. Brenes; R. M. Crooks  "Paper Electrochemical Device for Detection of DNA and Thrombin by Target-Induced Conformational Switching"  Anal. Chem. 2014, 86, 6166-6170 (DOI: 10.1021/ac501438y).

J. J. Yoo; M. J. Anderson; T. M. Alligrant; R. M. Crooks  "Electrochemical Detection of Insulating Beads at Sub-attomolar Concentration via Magnetic Enrichment in a Microfluidic Device" Anal. Chem. 2014, 86, 4302-4307 (DOI: 10.1021/ac404093c).

S. E. Fosdick; S. P. Berglund; C. B. Mullins; R. M. Crooks  "Evaluating Electrocatalysts for the Hydrogen Evolution Reaction using Bipolar Electrode Arrays: Bi- and Trimetallic Combinations of Co, Fe, Ni, Mo, and W"  ACS Catal. 2014, 4, 1332-1339 (DOI: 10.1021/cs500168t).

C. Renault; M. J. Anderson; R. M. Crooks  "Electrochemistry in Hollow-Channel Paper Analytical Devices" J. Am. Chem. Soc. 2014, 136, 4616-4623 (DOI: 10.1021/ja4118544).

K. N. Knust; D. Hlushkou; U. Tallarek; R. M. Crooks  "Electrochemical Desalination for a Sustainable Water Future" ChemElectroChem 2014, 1, 850-857 (DOI: 10.1002/celc.201300236).